Advanced Usage

This section covers a few examples on how to run NFVbench with multiple different settings. Below are shown the most common and useful use-cases and explained some fields from a default config file.

How to change any NFVbench run configuration (CLI)

NFVbench always starts with a default configuration which can further be refined (overridden) by the user from the CLI or from REST requests.

At first have a look at the default config:

nfvbench --show-default-config

It is sometimes useful derive your own configuration from a copy of the default config:

nfvbench --show-default-config > nfvbench.cfg

At this point you can edit the copy by:

  • removing any parameter that is not to be changed (since NFVbench will always load the default configuration, default values are not needed)
  • edit the parameters that are to be changed changed

A run with the new confguration can then simply be requested using the -c option and by using the actual path of the configuration file as seen from inside the container (in this example, we assume the current directory is mapped to /tmp/nfvbench in the container):

nfvbench -c /tmp/nfvbench/nfvbench.cfg

The same -c option also accepts any valid yaml or json string to override certain parameters without having to create a configuration file.

NFVbench provides many configuration options as optional arguments. For example the number of flows can be specified using the –flow-count option.

The flow count option can be specified in any of 3 ways:

  • by providing a confguration file that has the flow_count value to use (-c myconfig.yaml and myconfig.yaml contains ‘flow_count: 100k’)
  • by passing that yaml paremeter inline (-c “flow_count: 100k”) or (-c “{flow_count: 100k}”)
  • by using the flow count optional argument (–flow-count 100k)

Showing the running configuration

Because configuration parameters can be overriden, it is sometimes useful to show the final configuration (after all oevrrides are done) by using the –show-config option. This final configuration is also called the “running” configuration.

For example, this will only display the running configuration (without actually running anything):

nfvbench -c "{flow_count: 100k, debug: true}" --show-config

Connectivity and Configuration Check

NFVbench allows to test connectivity to devices used with the selected packet path. It runs the whole test, but without actually sending any traffic. It is also a good way to check if everything is configured properly in the configuration file and what versions of components are used.

To verify everything works without sending any traffic, use the –no-traffic option:

nfvbench --no-traffic

Used parameters:

  • --no-traffic or -0 : sending traffic from traffic generator is skipped

Fixed Rate Run

Fixed rate run is the most basic type of NFVbench usage. It can be used to measure the drop rate with a fixed transmission rate of packets.

This example shows how to run the PVP packet path (which is the default packet path) with multiple different settings:

nfvbench -c nfvbench.cfg --no-cleanup --rate 100000pps --duration 30 --interval 15 --json results.json

Used parameters:

  • -c nfvbench.cfg : path to the config file
  • --no-cleanup : resources (networks, VMs, attached ports) are not deleted after test is finished
  • --rate 100000pps : defines rate of packets sent by traffic generator
  • --duration 30 : specifies how long should traffic be running in seconds
  • --interval 15 : stats are checked and shown periodically (in seconds) in this interval when traffic is flowing
  • --json results.json : collected data are stored in this file after run is finished

Note

It is your responsibility to clean up resources if needed when --no-cleanup parameter is used. You can use the nfvbench_cleanup helper script for that purpose.

The --json parameter makes it easy to store NFVbench results. The –show-summary (or -ss) option can be used to display the results in a json results file in a text tabular format:

nfvbench --show-summary results.json

This example shows how to specify a different packet path:

nfvbench -c nfvbench.cfg --rate 1Mbps --inter-node --service-chain PVVP

Used parameters:

  • -c nfvbench.cfg : path to the config file
  • --rate 1Mbps : defines rate of packets sent by traffic generator
  • --inter-node : VMs are created on different compute nodes, works only with PVVP flow
  • --service-chain PVVP or -sc PVVP : specifies the type of service chain (or packet path) to use

Note

When parameter --inter-node is not used or there aren’t enough compute nodes, VMs are on the same compute node.

Rate Units

Parameter --rate accepts different types of values:

  • packets per second (pps, kpps, mpps), e.g. 1000pps or 10kpps
  • load percentage (%), e.g. 50%
  • bits per second (bps, kbps, Mbps, Gbps), e.g. 1Gbps, 1000bps
  • NDR/PDR (ndr, pdr, ndr_pdr), e.g. ndr_pdr

NDR/PDR is the default rate when not specified.

NDR and PDR

The NDR and PDR test is used to determine the maximum throughput performance of the system under test following guidelines defined in RFC-2544:

  • NDR (No Drop Rate): maximum packet rate sent without dropping any packet
  • PDR (Partial Drop Rate): maximum packet rate sent while allowing a given maximum drop rate

The NDR search can also be relaxed to allow some very small amount of drop rate (lower than the PDR maximum drop rate). NFVbench will measure the NDR and PDR values by driving the traffic generator through multiple iterations at different transmission rates using a binary search algorithm.

The configuration file contains section where settings for NDR/PDR can be set.

# NDR/PDR configuration
measurement:
    # Drop rates represent the ratio of dropped packet to the total number of packets sent.
    # Values provided here are percentages. A value of 0.01 means that at most 0.01% of all
    # packets sent are dropped (or 1 packet every 10,000 packets sent)

    # No Drop Rate; Default to 0.001%
    NDR: 0.001
    # Partial Drop Rate; NDR should always be less than PDR
    PDR: 0.1
    # The accuracy of NDR and PDR load percentiles; The actual load percentile that match NDR
    # or PDR should be within `load_epsilon` difference than the one calculated.
    load_epsilon: 0.1

Because NDR/PDR is the default --rate value, it is possible to run NFVbench simply like this:

nfvbench -c nfvbench.cfg

Other possible run options:

nfvbench -c nfvbench.cfg --duration 120 --json results.json

Used parameters:

  • -c nfvbench.cfg : path to the config file
  • --duration 120 : specifies how long should be traffic running in each iteration
  • --json results.json : collected data are stored in this file after run is finished

Multichain

NFVbench allows to run multiple chains at the same time. For example it is possible to stage the PVP service chain N-times, where N can be as much as your compute power can scale. With N = 10, NFVbench will spawn 10 VMs as a part of 10 simultaneous PVP chains.

The number of chains is specified by --service-chain-count or -scc flag with a default value of 1. For example to run NFVbench with 3 PVP chains:

nfvbench -c nfvbench.cfg --rate 10000pps -scc 3

It is not necessary to specify the service chain type (-sc) because PVP is set as default. The PVP service chains will have 3 VMs in 3 chains with this configuration. If -sc PVVP is specified instead, there would be 6 VMs in 3 chains as this service chain has 2 VMs per chain. Both single run or NDR/PDR can be run as multichain. Running multichain is a scenario closer to a real life situation than runs with a single chain.

External Chain

NFVbench can measure the performance of 1 or more L3 service chains that are setup externally. Instead of being setup by NFVbench, the complete environment (VMs and networks) has to be setup prior to running NFVbench.

Each external chain is made of 1 or more VNFs and has exactly 2 end network interfaces (left and right network interfaces) that are connected to 2 neutron networks (left and right networks). The internal composition of a multi-VNF service chain can be arbitrary (usually linear) as far as NFVbench is concerned, the only requirement is that the service chain can route L3 packets properly between the left and right networks.

To run NFVbench on such external service chains:

  • explicitly tell NFVbench to use external service chain by adding -sc EXT or --service-chain EXT to NFVbench CLI options
  • specify the number of external chains using the -scc option (defaults to 1 chain)
  • specify the 2 end point networks of your environment in external_networks inside the config file.
    • The two networks specified there have to exist in Neutron and will be used as the end point networks by NFVbench (‘napa’ and ‘marin’ in the diagram below)
  • specify the router gateway IPs for the external service chains (1.1.0.2 and 2.2.0.2)
  • specify the traffic generator gateway IPs for the external service chains (1.1.0.102 and 2.2.0.102 in diagram below)
  • specify the packet source and destination IPs for the virtual devices that are simulated (10.0.0.0/8 and 20.0.0.0/8)
../../../_images/extchain-config.png

L3 routing must be enabled in the VNF and configured to:

  • reply to ARP requests to its public IP addresses on both left and right networks
  • route packets from each set of remote devices toward the appropriate dest gateway IP in the traffic generator using 2 static routes (as illustrated in the diagram)

Upon start, NFVbench will: - first retrieve the properties of the left and right networks using Neutron APIs, - extract the underlying network ID (typically VLAN segmentation ID), - generate packets with the proper VLAN ID and measure traffic.

Note that in the case of multiple chains, all chains end interfaces must be connected to the same two left and right networks. The traffic will be load balanced across the corresponding gateway IP of these external service chains.

Multiflow

NFVbench always generates L3 packets from the traffic generator but allows the user to specify how many flows to generate. A flow is identified by a unique src/dest MAC IP and port tuple that is sent by the traffic generator. Flows are generated by ranging the IP adresses but using a small fixed number of MAC addresses.

The number of flows will be spread roughly even between chains when more than 1 chain is being tested. For example, for 11 flows and 3 chains, number of flows that will run for each chain will be 3, 4, and 4 flows respectively.

The number of flows is specified by --flow-count or -fc flag, the default value is 2 (1 flow in each direction). To run NFVbench with 3 chains and 100 flows, use the following command:

nfvbench -c nfvbench.cfg --rate 10000pps -scc 3 -fc 100

Note that from a vswitch point of view, the number of flows seen will be higher as it will be at least 4 times the number of flows sent by the traffic generator (add flow to VM and flow from VM).

IP addresses generated can be controlled with the following NFVbench configuration options:

ip_addrs: ['10.0.0.0/8', '20.0.0.0/8']
ip_addrs_step: 0.0.0.1
tg_gateway_ip_addrs: ['1.1.0.100', '2.2.0.100']
tg_gateway_ip_addrs_step: 0.0.0.1
gateway_ip_addrs: ['1.1.0.2', '2.2.0.2']
gateway_ip_addrs_step: 0.0.0.1

ip_addrs are the start of the 2 ip address ranges used by the traffic generators as the packets source and destination packets where each range is associated to virtual devices simulated behind 1 physical interface of the traffic generator. These can also be written in CIDR notation to represent the subnet.

tg_gateway_ip_addrs are the traffic generator gateway (virtual) ip addresses, all traffic to/from the virtual devices go through them.

gateway_ip_addrs are the 2 gateway ip address ranges of the VMs used in the external chains. They are only used with external chains and must correspond to their public IP address.

The corresponding step is used for ranging the IP addresses from the ip_addrs`, tg_gateway_ip_addrs and gateway_ip_addrs base addresses. 0.0.0.1 is the default step for all IP ranges. In ip_addrs, ‘random’ can be configured which tells NFVBench to generate random src/dst IP pairs in the traffic stream.

Traffic Configuration via CLI

While traffic configuration can be modified using the configuration file, it can be inconvenient to have to change the configuration file everytime you need to change a traffic configuration option. Traffic configuration options can be overridden with a few CLI options.

Here is an example of configuring traffic via CLI:

nfvbench --rate 10kpps --service-chain-count 2 -fs 64 -fs IMIX -fs 1518 --unidir

This command will run NFVbench with a unidirectional flow for three packet sizes 64B, IMIX, and 1518B.

Used parameters:

  • --rate 10kpps : defines rate of packets sent by traffic generator (total TX rate)
  • -scc 2 or --service-chain-count 2 : specifies number of parallel chains of given flow to run (default to 1)
  • -fs 64 or --frame-size 64: add the specified frame size to the list of frame sizes to run
  • --unidir : run traffic with unidirectional flow (default to bidirectional flow)

MAC Addresses

NFVbench will dicover the MAC addresses to use for generated frames using: - either OpenStack discovery (find the MAC of an existing VM) in the case of PVP and PVVP service chains - or using dynamic ARP discovery (find MAC from IP) in the case of external chains.

Status and Cleanup of NFVbench Resources

The –status option will display the status of NFVbench and list any NFVbench resources. You need to pass the OpenStack RC file in order to connect to OpenStack.

# nfvbench --status -r /tmp/nfvbench/openrc
2018-04-09 17:05:48,682 INFO Version: 1.3.2.dev1
2018-04-09 17:05:48,683 INFO Status: idle
2018-04-09 17:05:48,757 INFO Discovering instances nfvbench-loop-vm...
2018-04-09 17:05:49,252 INFO Discovering flavor nfvbench.medium...
2018-04-09 17:05:49,281 INFO Discovering networks...
2018-04-09 17:05:49,365 INFO No matching NFVbench resources found
#

The Status can be either “idle” or “busy (run pending)”.

The –cleanup option will first discover resources created by NFVbench and prompt if you want to proceed with cleaning them up. Example of run:

# nfvbench --cleanup -r /tmp/nfvbench/openrc
2018-04-09 16:58:00,204 INFO Version: 1.3.2.dev1
2018-04-09 16:58:00,205 INFO Status: idle
2018-04-09 16:58:00,279 INFO Discovering instances nfvbench-loop-vm...
2018-04-09 16:58:00,829 INFO Discovering flavor nfvbench.medium...
2018-04-09 16:58:00,876 INFO Discovering networks...
2018-04-09 16:58:00,960 INFO Discovering ports...
2018-04-09 16:58:01,012 INFO Discovered 6 NFVbench resources:
+----------+-------------------+--------------------------------------+
| Type     | Name              | UUID                                 |
|----------+-------------------+--------------------------------------|
| Instance | nfvbench-loop-vm0 | b039b858-777e-467e-99fb-362f856f4a94 |
| Flavor   | nfvbench.medium   | a027003c-ad86-4f24-b676-2b05bb06adc0 |
| Network  | nfvbench-net0     | bca8d183-538e-4965-880e-fd92d48bfe0d |
| Network  | nfvbench-net1     | c582a201-8279-4309-8084-7edd6511092c |
| Port     |                   | 67740862-80ac-4371-b04e-58a0b0f05085 |
| Port     |                   | b5db95b9-e419-4725-951a-9a8f7841e66a |
+----------+-------------------+--------------------------------------+
2018-04-09 16:58:01,013 INFO NFVbench will delete all resources shown...
Are you sure? (y/n) y
2018-04-09 16:58:01,865 INFO Deleting instance nfvbench-loop-vm0...
2018-04-09 16:58:02,058 INFO     Waiting for 1 instances to be fully deleted...
2018-04-09 16:58:02,182 INFO     1 yet to be deleted by Nova, retries left=6...
2018-04-09 16:58:04,506 INFO     1 yet to be deleted by Nova, retries left=5...
2018-04-09 16:58:06,636 INFO     1 yet to be deleted by Nova, retries left=4...
2018-04-09 16:58:08,701 INFO Deleting flavor nfvbench.medium...
2018-04-09 16:58:08,729 INFO Deleting port 67740862-80ac-4371-b04e-58a0b0f05085...
2018-04-09 16:58:09,102 INFO Deleting port b5db95b9-e419-4725-951a-9a8f7841e66a...
2018-04-09 16:58:09,620 INFO Deleting network nfvbench-net0...
2018-04-09 16:58:10,357 INFO Deleting network nfvbench-net1...
#

The –force-cleanup option will do the same but without prompting for confirmation.